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Abstract

A comparative molecular field analysis (CoMFA) was used to model the efficacy with which theRhodococcus erythropolismono-oxygenase,
DszC, catalyzes the enantioselective sulfoxidation of a broad range of substrates. Experimentally determined values of both the yield and
enantiomeric excess for this reaction were employed to create these CoMFA models. A highly predictive CoMFA model was constructed for the
prediction of enantiomeric excess of the sulfoxide product. The predictive ability of the model was demonstrated by both cross-validation of the
t lso included
t A model.
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raining set (q2 = 0.74) and for an external test set of substrates. The enantiomeric excesses of the members of the test set, which a
wo amino acid sulfides that were structurally distinct from the membership of the training set, were predicted well by the CoMF
roduct yield was not modelled well by any CoMFA model. Different models comparing the likely bioactive conformations of the s
uggest that most compounds assume an ‘extended’ conformation upon binding. Contour diagrams illustrating significant substra
nteractions suggest that the model, which predicts the enantiomeric excess, is consistent with previous conclusions regarding
arious substrate substitutions on the enantiopurity of the product of the biotransformation.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Eubacteria of the genusRhodococcusare a diverse group
f microorganisms exhibiting broad metabolic diversity that
re commonly found in many environmental niches from
oils to seawater and as plant and animal pathogens[1–3]. The
conomic importance of this bacterium is becoming increas-

ngly apparent as knowledge of its genetics and biochemistry
ccumulates. One current area of research ofRhodococcus
trains is the biocatalytic desulfurization of fossil fuels[2–4].
his process employs the bacterium to remove the sulfur from
etroleum products without degrading the fuel value.

The desulfurization pathway ofRhodococcus erythropolis
GTS8 has been extensively studied and its enzymes char-
cterized[5–7]. This pathway is illustrated inFig. 1 for
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the desulfurization of dibenzothiophene, one of the m
components of middle-distillate petroleum[3,8]. This four-
step process involves three enzymes, which are found
plasmid-encoded dibenzothiophene desulfurization op
Of the three enzymes involved, two are cytoplasmic m
oxygenases (DszA and DszC), while the third (DszB)
desulfinase.

Several mutant strains of this bacterium have been
neered in an attempt to optimize its ability to remove su
[4,8]. One particular mutant, BKO-53, engineered by
ergy Biosystems Corporation[7,8] expresses only the mon
oxygenase DszC. This mutant has been recently exam
for its ability to function as a stereospecific biocatalyst
the oxidation of sulfides[9,10]. Results have shown that th
strain ofRhodococcusis able to convert sulfides to the c
responding sulfoxides in moderate to high yields with g
stereoselectivity[9,10].

Chiral sulfoxides are of interest for a number of reas
Sulfoxide derivatives of naturally occurring amino acids
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Fig. 1. The metabolic pathway for the desulfurization of DBT to HBP and sulfite. DszC catalyzes the conversion of dibenzothiophene (DBT) to the sul-
foxide dibenzothiophene 5-oxide (DBTO) and further to the sulfone dibenzothiophene 5,5-dioxide (DBTO2). DszA then further degrades DBTO2 to 2-(2′-
hydroxyphenyl)benzene sulfinate (HBPSi). Finally, DszB catalyzes the conversion of HBPSi to 2-hydroxybiphenyl (HBP) and sulfite (SO3

2−) [8].

act to regulate cholesterol catabolism[11] and have antibiotic
properties[12]. Chiral sulfoxides are valuable as asymmetric
starting materials[13–16], and as chiral auxiliaries[15] in
organic synthesis. They have been chemically synthesized
using such reagents as oxaziridines or peroxide–metal com-
plexes[17], and more recently, using chiral binaphthol[18] or
diphenylethan-1,2-diol[19]. Isolated enzymes such as perox-
idases, haloperoxidases[16,20,21]and mono/di-oxygenases
[16,21,22]can also be employed for the stereospecific oxida-
tion of sulfides. Whole cell biocatalysts, including bacteria
such asRhodococcus, Pseudomonas putida, and genetically

modified E. coli [21], or fungi such asAspergillus sp.,
Helminthosporiumsp., andMortierella isabellina [21,23]
can also be used to generate chiral sulfoxides.

In a previous article published in this journal, the yields
and enantiomeric excesses (e.e.) for the biocatalytic sulfur ox-
idation of a series of substrates byR.erythropolisIGTS8 were
reported[9]. This paper extends the work reported therein by
creating a model of the active site of the enzyme responsible
for the biocatalytic sulfur oxidation. The goal of this work was
to construct a three-dimensional structure-activity relation-
ship (3D-QSAR) of the sulfur oxidizing enzyme DszC ofR.
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erythropolisIGTS8. While both two- and three-dimensional
active site models have been constructed for a similar enzyme
in the fungal biocatalystHelminthosporiumsp. NRRL 4671,
such models can only provide qualitative measures of sub-
strate diversity[21,24]. Comparative molecular field analysis
(CoMFA) [25–28], a method that can be used to construct a
3D-QSAR, uses intermolecular potential energies between
an atomic probe and a series of substrates to model interac-
tions within the binding site of an enzyme. In this paper we
employ a CoMFA to create both a predictive model of e.e. of
the oxidation reaction of DszC and a qualitative representa-
tion of the important interactions that may exist within that
enzyme’s active site.

2. Results and discussion

In order to create a CoMFA model to predict the outcome
of the sulfoxidation reaction byR. erythropolis, an appropri-
ate training set of known substrates was established. The set
of 26 compounds used to construct the final CoMFA model
is listed in the top portion ofTable 1. The e.e. values pre-
dicted by the model are listed alongside the experimental

Table 1
T

C Ex l

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

values determined by Holland et al.[9]. The good agree-
ment between the experimental and predicted values of e.e.
is an initial indication of the strong predictive ability of the
model. It should be noted that in this and all following tables,
the e.e. values correspond to the fractional excess of the R
enantiomer.

Also shown inTable 1are the data for four additional com-
pounds (38, 51, 41 and 45) originally included in the training
set that were later removed as outliers. Two of these com-
pounds were the only two members of the training set that
were found to produce predominantly the S enantiomer in the
desulfurization reaction (compounds 38 and 51). The other
two compounds were the only two compounds of the train-
ing set that were dibenzyl sulfides (41 and 45). The CoMFA
model developed using the 26 member training set is unable
to predict the e.e. of the product of the enzymatic sulfoxi-
dation for these four compounds, as indicated by their large
residuals inTable 1. In order to produce a successful pre-
diction of e.e. for compounds 38, 51, 41, and 45, they will
have to be treated in a different fashion than the 26 members
of the training set, either by aligning them in a different ori-
entation, using a different conformation, or by developing a
unique CoMFA model.
raining set for final model

ompound numbera Formula

1 PhSCH3

3 m-CH3PhSCH3

4 o-CH3PhSCH3

5 p-CH3OPhSCH3

6 p-FPhSCH3

7 p-ClPhSCH3

9 p-NO2PhSCH3

10 p-CNPhSCH3

11 1-NaphthylSCH3
12 2-NaphthylSCH3
13 PhCH2SCH3

19 p-,i-C3H7PhCH2SCH3

21 p-CH3OPhCH2SCH3

25 p-CH3COPhCH2SCH3

27 p-FPhCH2SCH3

28 p-CF3PhCH2SCH3

29 p-ClPhCH2SCH3

30 p-BrPhCH2SCH3

31 p-NO2PhCH2SCH3

32 m-NO2PhCH2SCH3

33 o-NO2PhCH2SCH3

40 p-BrPhSCH2CN
47 2-PyridylCH2SCH3

48 4-PyridylCH2SCH3

54 2-ThiopheneCH2SCH3
56 3-ThiopheneCH2SPh
38c PhSCH2CN −0
51c 2-PyridylCH2SPh −0
41c PhCH2SPh
45c p-CH3PhCH2SPh

a Compound numbers and e.e. values correspond to those reported inTables 1,
b Residual = predicted e.e.− experimental e.e.
c Compounds determined to be outliers that were removed from the traini
d Compounds 38 and 51 were measured to have an e.e. of the S enantiom
perimental e.e.a Predicted e.e. Residuab

.02 0.01 −0.01

.10 0.10 0.00

.04 0.04 0.00

.22 0.14 −0.08

.63 0.63 0.00

.72 0.73 0.01

.99 0.98 −0.01

.85 0.85 0.00

.25 0.31 0.06

.62 0.56 −0.06

.26 0.33 0.07

.49 0.51 0.02

.27 0.29 0.02

.22 0.21 −0.01

.62 0.64 0.02

.85 0.88 0.03

.65 0.72 0.07

.76 0.73 −0.03

.76 0.71 −0.05

.52 0.56 0.04

.70 0.59 −0.11

.94 0.95 0.01

.24 0.25 0.01

.54 0.55 0.01

.11 0.07 −0.04

0.34 0.35 0.01
.13d 0.27 0.40
.45d 0.40 0.85
0.99 0.16 −0.83
0.82 0.12 −0.70

2 and 4in Holland et al.[9].

ng set.
er and are thus reported as negative values relative to the others.
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CoMFA is a shape-dependent technique[25] and there-
fore calculated field values are highly dependent upon the
orientation and conformation of the substrates under consid-
eration. Additionally, it is widely believed that ligand–protein
interactions usually occur when the ligand is at or near one
of its local minimum energy conformations[25,26]. Follow-
ing these assumptions, all the members of the training set
were individually aligned to each of the two low energy con-
formations of the template molecule (PhSCH2Ph: compound
41,Table 3in [9]). This template was chosen because of its
high activity and because it possessed only two minimum
energy conformations, which simplified the alignment of the
members of the training set. It was disappointing therefore,
that the e.e. was not well predicted for the chosen template
(seeTable 1). However, this does not detract from the success
of the ensuing model, since the template merely provides a
common geometric framework for substrate alignment and
does not otherwise influence the predictive model if removed
from the training set. The low energy conformations of the
template are shown inFig. 2, which shows the molecule in
both the extended and folded conformations. The structural
variation encompassed by the 26 members of the training set

F
p
m
a
�

=
f
F

Table 2
Optimized CoMFA parameter set

Conformation Extended
Activity e.e.
Grid dimensionsa (Å) ±10
Step sizeb (Å) 2
Energy cutoffc (kcal/mol) 20
�2 – variance cutoffd (kcal/mol)2 1
Number of pointse 1061 of 1331
Number of componentsf 8
PRESSg 0.60
Cross-validatedh q2 0.74

a Thex,yandzdimensions of the grid sampled by the probe atom, centred
about the centre of mass of the template compound.

b The separation between lattice points of the grid.
c The maximum energy allowed for any particular probe–substrate inter-

action.
d If the variance of the probe–substrate interactions at a particular lattice

point for all of the members of the training set was below this value, that
point was excluded from the data set.

e The number of lattice points remaining after filtering out points with
low variance – the second value is the total number of points sampled prior
to filtering.

f The optimal number of latent variables (PLS components) included.
g Predicted residual sum of squares[25].
h Eq. (1) [25].

is illustrated inFig. 3a, which shows all of the compounds
aligned in the extended conformation.

The values of the CoMFA parameters used in the best
model for predicting enantiomeric excess are shown in
Table 2. The optimal parameters for our model were deter-
mined by choosing those that maximized the ability to predict
e.e. as measured by the cross-validatedq2. The final model
created to predict the e.e. for sulfide oxidation byR. ery-
thropolishad aq2 of 0.74, which suggests that it is of high
quality. The most influential of the various parameters listed
in Table 2on the value ofq2 were the substrate conformation
and biological activity that was modelled. The models were
not very sensitive to moderate changes of the values of the
remaining parameters (see discussion inSection 4). Fig. 3b
depicts a head-on view of a portion of the selected CoMFA
grid, in order to depict the positioning of the probe atom about
the aligned substrates of the training set.

This best CoMFA model for predicting e.e. was tested
with an external test set of substrates (Table 3). This test set
consisted of five of the compounds from Holland et al.[9]
that had not been included in the training set (compounds 8,
18, 23, 24, and 34), but are members of the same classes of
compounds. In addition, in order to examine the flexibility of
the model, two amino acid sulfides were tested (compounds
ig. 2. Representation of the extended and folded conformations of the tem-
late molecule, PhSCH2Ph. For ease of discussion within the text, the aro-
atic ring bonded in a position alpha to the sulfur is denoted as the�-region
nd the aromatic ring bonded in a position beta to the sulfur is denoted the
-region. Extended conformation dihedral angles:χ1 (C�2 – C�1 – S – C)
90.0◦, χ2 (C�1 – S – C – C�1) = 180.0◦, χ3 (S – C – C�1 – C�2) = 90.1◦;

olded conformation dihedral angles:χ1 = 82.8◦, χ2 = 50.4◦, χ3 = 78.0◦.
igure prepared using InsightII[30].

60 and 61,Table 3). The high predictive ability of the model
i
b ally
d
t e
m . for
a t (the
a ictive
t

s illustrated both by the small residuals listed inTable 3and
y Fig. 4, which plots the predicted versus experiment
etermined e.e. values for both the training set (Table 1) and

he external test set (Table 3) compounds. The ability of th
odel to make relatively accurate predictions of the e.e
class of compounds not considered in the training se

mino acid sulfides) demonstrates its potential as a pred
ool.
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Fig. 3. (a) Representation of the 26 members of the training set aligned to the template compound in the extended conformation. S: yellow; C: green; O: red;
N: blue; F: cyan; Br; brown; Cl: light green; I: purple. (b) Aligned training set with portion of surrounded lattice grid used for optimized CoMFA model; lattice
spacing of 2̊A. Figures prepared using InsightII[30].

Also plotted inFig. 4are the predicted versus experimen-
tally determined e.e. values for the four compounds identified
as outliers (Table 1: compounds 38, 51, 41 and 45). The large
residuals for these four compounds underline the inadequacy
of the model for predicting e.e. for these four compounds,
and presumably others of their classes.

Table 3
External test set

Compound numbera Formula Experimental e.e.a Predicted e.e. Residualb

8 p-BrPhSCH3 0.76 0.72 −0.04
18 p-C2H5PhCH2SCH3 0.53 0.52 −0.01
23 o-CH3OPhCH2SCH3 0.44 0.42 −0.02
24 p-CH3OCH2PhCH2SCH3 0.61 0.48 −0.13
34 p-CNPhCH2SCH3 0.72 0.84 0.12
60 N-MOC-l-methionine methyl ester 0.83 0.80 −0.03
61 N-MOC-d-methionine methyl ester 0.96 0.99 0.03

a Compound numbers and e.e. values correspond to those reported inTables 1, 2 and 4in Holland et al.[9].
b Residual = predicted e.e.− experimental e.e.

The q2 values for optimized CoMFA models for the
prediction of enantiomeric excess given the two different sub-
strate conformations examined are compared inTable 4. The
CoMFA model for predicting e.e., obtained where all sub-
strates were aligned in the extended conformation, is signifi-
cantly more predictive than that obtained when the substrates
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Fig. 4. Predicted vs. experimentally determined e.e. values for the sulfur
oxidation reaction of the enzyme DszC ofR. erythropolis. The open circles
are the values for the training set compounds (Table 1), while the grey squares
represent the values of the four compounds identified as outliers (Table 1).
The solid triangles are the values for the external test set (Table 3), while the
grey diamonds represent the two amino acid sulfides tested (Table 3).

were aligned in the folded conformation (a cross-validated
q2 of 0.74 versus 0.28). The highq2 value obtained for the
extended conformation model (Table 4, row 1) corresponds
to a high level of agreement between the actual and predicted
values of the enantiomeric excess. The apparent success
in predicting the e.e. for the extended model suggests that
the substrate, when bound in the DszC active site, is more
likely to assume an extended conformation than a folded
conformation.

We also attempted to create CoMFA models using the
product yield as the measure of biological activity. The data
for yield were taken from Holland et al.[9], where yield
measures the mass fraction of sulfoxide product to sulfide
starting material. None of these models were at all successful
at predicting product yield (the best values ofq2 for models
developed using the extended and folded conformations of
the substrate were−0.07 and 0.19, respectively). In retro-
spect, this is not a surprising since the data were obtained
for a whole cell biocatalyst; both inefficient substrate trans-
port through cell membranes and possible interactions with
other cellular components would decrease the experimental
yield. The present CoMFA methodology assumes uninhib-
ited transport to the active site and cannot hope to capture the
intricacies of substrate transport, although one crude approx-
imation would be to include an additional descriptor such as
l
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T
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F
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a d
o

Fig. 5. Top-view contour diagram of the correlation between predictive abil-
ity for enantiomeric excess and regions in space in the putative binding
pocket of the enzyme DszC using both steric and electrostatic interactions
to model this relationship. The blue represents regions of positive correla-
tion (enhanced e.e.), while the red represents regions of negative correlation
(diminished e.e.). The template compound, PhCH2SPh, is shown for per-
spective. Figure prepared using InsightII[30].

enantiomeric excess as predicted by the CoMFA model with
the parameters described inTable 2. The contribution of
each three-dimensional lattice point to the predicted e.e. is
computed from the corresponding CoMFA coefficient. The
contour diagrams are a visual representation of important
interactions that may exist within the active site of the
enzyme. The blue regions are positively correlated, while the
red regions are negatively correlated to e.e. of the sulfoxide
product. That is to say, the presence of substituents on the
substrate that project into the regions coloured blue are
associated with enhanced e.e., whereas substituents in the
regions coloured red are associated with diminished e.e.
of the sulfoxide product. These diagrams concur with the
proposal by Holland et al.[9] that para-substituents on
both aromatics, particularly the�-phenyl, lead to products
with higher enantiomeric excesses that those withortho-
or meta-substitutions. The positive correlations in the
para-position is obvious, while the regions of negative
correlation illustrate the sensitivity of the enzyme toortho-
andmeta-substitutions on both the� and� rings.
ogP to attempt to account for this phenomenon.
Figs. 5 and 6are contour diagrams that illustrate regi

f high positive and negative correlation to the predi

able 4
bility of CoMFA model to predict enatiomeric excess for different subs
onformationsa

onformation Activity modelled Cross-validatedq2

xtended e.e. only 0.74
olded e.e. only 0.28

a These models were created using all 26 members of the trainin
nd employed the optimized parameters shown inTable 2unless indicate
therwise.
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Fig. 6. Side-view contour diagram of the correlation between predictive
ability for enantiomeric excess and regions in space in the putative binding
pocket of the enzyme DszC using both steric and electrostatic interactions
to model this relationship. The blue represents regions of positive correla-
tion (enhanced e.e.), while the red represents regions of negative correlation
(diminished e.e.). The template compound, PhCH2SPh, is shown for per-
spective. Figure prepared using InsightII[30].

The asymmetry of the modelled binding pocket is quite
obvious in Figs. 5 and 6. Interactions that are significant
for producing the R enantiomer in excess occur predomi-
nantly on three sides when visualized in a ‘top-down’ fashion
(Fig. 5). One possible explanation for the ‘open’ region seen
in the lower left side ofFig. 5is the presence of an additional
pocket within the binding site. Such an explanation could ac-
count for the poor degree to which the biphenyl compounds
(41 and 45 inTable 1) were predicted by this model, if this
pocket provided an alternative binding mode for these types
of compounds. Instances of other sulfur oxygenases that bind
substrates in one of two different modes have been reported
in the literature[21].

Figs. 5 and 6represent the final CoMFA model that in-
corporates both steric and electrostatic components of the
interaction energy of the probe with the training set of sub-
strates.Table 5shows the effect upon predictive ability (q2)
of the model when considering only electrostatic or van der

Table 5
Comparison of energy terms employeda

Energy term(s) Number of
components

PRESS Cross-validatedq2

Electrostatic only 2 0.98 0.54
van der Waals only 3 1.80 0.16
Total (elect. + vdW) 8 0.60 0.74

a These models were created using all 26 members of the training set
and employed the optimized parameters shown inTable 2unless indicated
otherwise.

Waals potential energies, as compared to the total energy.
The electrostatic interactions clearly have more of an im-
pact on the outcome of the prediction (theq2 using electro-
static energy only is 0.54 versus 0.16 for van der Waals only).
A contour diagram of the model created that employs only
the electrostatic interactions is shown inFig. 7; the similar-

Fig. 7. Top-view contour diagram of the correlation between predictive abil-
ity for enantiomeric excess and regions in space in the putative binding pocket
of the enzyme DszC using only the electrostatic interactions to model this
relationship. The blue represents regions of positive correlation (enhanced
e.e.), while the red represents regions of negative correlation (diminished
e.e.). The template compound, PhCH2SPh, is shown for perspective. Figure
prepared using InsightII[30].
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ity to Figs. 5 and 6is obvious. The regions of high positive
correlation in this diagram correspond to regions where in-
creased electron density is favourable to large e.e. values for
sulfoxide product (the probe used to model the interactions
had a positive charge). This data corroborates the observa-
tion in [9] that substrates with higher electron-withdrawing
groups (e.g.,para-NO2, and -CN) provided higher e.e. val-
ues.

3. Conclusion

In this paper we have outlined the construction of a highly
predictive CoMFA model for the enantiomeric excess of the
sulfur oxidation for a broad range of products catalyzed by
the mono-oxygenase, DszC, of the bacteriumR. erythropolis
IGTS8. Although we found that the yield was not well
modelled, a CoMFA model was able to predict, with a
q2 of 0.74, the enantiomeric excess for a wide range of
substrates of this reaction. Comparison of two low energy
conformations suggests that the most likely bioactive form
for the classes of substrates for which the model is predictive
has an extended conformation. Given the high predictive
ability of the best model, it was surprising to find that the
dibenzyl compounds, which included the template molecule,
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dicted than any of the other compounds. Further investiga-
tion found that these compounds belonged to two groups that
were unique to the training set. Two of these compounds
(compounds 38 and 51 fromTables 2 and 4in [9]) were
the only members of the training set that had been pro-
duced predominantly as the S enantiomer. The other two
compounds (compounds 41 and 45 fromTable 3 in [9])
were the only two members of the training set that were
dibenzyl sulfides. These four compounds were omitted and
the remaining 26 compounds (Table 1) were used to con-
struct the final model. These compounds had yields ranging
from 4 to 95% and enantiomeric excess values ranging from
2 to 99%.

The low energy conformations of each of the members
of the training set were determined using the SPARTAN
molecular modelling package[29]. The compound identified
as the ‘ideal substrate’ in Ref.[9], benzyl mercapto-benzene
(PhCH2SPh), was used as the template molecule. This
compound was chosen because of its high activity (e.e.
of 0.99) and its relative lack of conformational flexibility
(PhCH2SPh assumes only two low-energy conformations
– seeFig. 2). The molecular modelling package InsightII
[30] was used to align individually the members of the
training set to the template. The alignment was carried
out by rigid superposition of the substrate and template,
w irs of
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ere not well predicted in concert with the other clas
f substrates. This suggests the possibility of a diffe
inding mode for this type of compound. Contour diagr
onstructed from the CoMFA model illustrate regions
mportant steric and electrostatic interactions within
inding pocket of the enzyme and are consistent with p
us conclusions made by Holland et al.[9] about the effec
n enantioselectivity of various substitutions on the su
ubstrate.

. Experimental

Biological activity data was obtained from Holland et
9] for the biotransformation of sulfides byR. erythropo
is IGTS8 BKO-53. Yields were reported as a w/w fract
f sulfoxide product to sulfide starting material while en

iomeric excess was reported as a fraction of R enanti
f the total weight of product.

The training set was chosen from among the 68 c
ounds for which data was available (Tables 1–5in [9]).
ompounds were selected in order to maximize the s

ural variation of the members and to provide a broad r
f activity values. Only those substrates that had fe

han 10 energetically non-degenerate conformational
ma were considered for the training set. A subset of 30
trates representing four classes of compounds (subs
ethyl phenyl sulfides, substituted benzyl sulfides, dibe

ulfides, and heterocyclic sulfides) was initially chosen
he training set. Examination of preliminary models sho
hat four of these compounds were much more poorly
here the root-mean-square distance between all pa
orresponding heavy atoms (C, N, O, and S) was minim
he closest matching conformations of each member o

raining set were aligned individually to both the exten
nd folded conformations of the template molecule show
ig. 2.

Using the CHARMm forcefield[31,32], the interaction
nergies of a probe atom with each of the members o

raining set were calculated within the confines of a th
imensional lattice. The selected probe, an sp3 carbon atom
ith a +1 charge, was positioned at each point in the

ice and the electrostatic, van der Waals and total (ele
tatic + van der Waals) interaction energies were calcul
distance-dependent dielectric constant was employe

he electrostatic interaction calculations.
An in-house partial least-squares programme, based

he NIPALS algorithm[33], was used to develop all CoMF
odels. The ‘leave-one-out’ cross-validation method[26,34]
as used to determine the optimal number of latent varia
he optimal number of latent variables was that which
ided the lowest cross-validated predicted residual su
quares (PRESS). The resultant CoMFA model was then
ted using this optimal set of latent variables with the

or the entire training set. The cross-validatedq2, used as
easure of predictive ability, was calculated as shown b

25]:

2 = SD− PRESS

SD
(1)

he PRESS is the predicted residual sum of squares and
um, over all substrates, of the squared differences be
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the actual and predicted biological activity values, whereas
SD is the sum of the squared deviations of the actual activity
values from their mean. Values ofq2 close to one are highly
predictive, while values of zero or lower are no better than
random predictions[25].

Several CoMFA models were constructed to examine the
effects of varying certain standard parameters. The effect of
changing the grid dimensions, step size, energy cutoff, and
variance cutoff were all probed by iteratively creating models
that varied in only one of these parameters (see footnotes to
Table 2for explication of these parameters). Varying the en-
ergy cutoff from 10 to 30 kcal mol−1 and the variance cutoff
from 1 to 5 (kcal mol−1)2 did not have a significant effect on
the predictive ability of the model, as the value ofq2 changed
by at most 10%. Increasing the overall dimensions of the
cubic grid beyond±10Å about the aligned compounds did
not improveq2, as the grid points at the extremities of the box
were eliminated due to the lack of variation in the interaction
energies at these locations. A smaller cubic grid of only
±5Å about the aligned compounds was not sufficiently large
to incorporate all important regions of interaction space,
as the value ofq2 dropped by up to 25%. Increasing the
separation between lattice points on the grid from 2 to 3Å
decreasedq2 only by about 10%. Due to computer memory
limitations, we were unable to work with grids of sufficiently
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the assistance of F. Brown and helpful suggestions of S.M.
Rothstein. This work was supported by grants from the Nat-
ural Sciences and Engineering Research Council of Canada
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Appendix A. Availability of supporting information

Protein databank files of the aligned compounds listed in
Tables 1 and 3, used to develop the CoMFA model presented
here, are available by contacting H.L. Gordon.
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